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SUMMARY

The heats of formation and couibustionhave been calculated for liquid
and gaseous alkyl- and silyl-substitutedboron compounds by a semitheoret-

. ical method. Alkylation and more especially silylation (substitutionof
a SiH3 group) reduce the heat of cotiustion. As the molecular weight of

a- the parent boron hydride increases, the reduction in the heats of cotius-
=! tion resulting from the substitution of a given number of al@l or silyl
L groups decreases. As many as three csrbon atoms can be substituted on

boron hydrides with five or more boron atoms without reducing the heat of
couibustionbelow 25,000 Btu per pound. The substitution of one silicon
atom reduces the heat of couibustionas much as do three carbon atoms.
Alkyl-substituted higher-molecular-weightboron hydrides may prove to he
satisfactory high-energy fuels.

INTROIXJCTION

Considerable effort has been put into the synthesis and investigation
of the physical, thermodynamic, and kinetic properties of”liquid and solid
fuels containing boron and hydrogen, or boron, hydrogen, and csrbon (refs.
1 to 15). These boron-containing fuels have heats of combustion as much
as 70 percent higher than JP fuels (ref. 7 and this report), high flme
speeds (ref. 8), and high specific impulses (ref. 9)jconsequently, they
afford high thrust and improved range for ra-jet and rocket applications.

Experimental determinations of the heats of combustion of boron-
containing compounds are complicated by the incompleteness of combustion
of the boron and carbon (refs. 10 and 11 and unpublished Lewis data).
Fut&rmOre) it is very difficult to prepare boron hydrides or alkylated
boron k@3rides of high purity and maintain such purities over appreciable
periods of time (unpublishedLewis data). However, the experimentally

.- known heats of formation available for several boron hydrides and tri-
alkylboranes can be used along with the appropriate bond energies to

+.
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calculate the heats of formation of many aikyl- apd @lyl-(SiH3) sub- ,,

stituted boron hydrides. These heats of f~rmatio~ c~ then be combi~ed ~~ u ~
with the heats of formation of the combustion pro~ucts to obtain the ~- ~

—

heats of combustion of the reactants. ‘ ~ >
—-...+. - ::

1

The heats of combustion of the ethyldiborane h&e been calculated ~~
previously (ref.

1
7) f’rombond-energy data~”y a me ho<consider~ly di~~ ,:

ferent in its details from the method used”in the!pr@ent report. The
emphasis in reference 7 was on obtaining ti appro~im”ateempirical equa-
tion which could.be used to estimate rough~y the heat~ of conibustionof ~~
boron-carbon-hydrogen fizelsof unknown.stricture.~ In:a recent ‘National
Bureau of Standards report (ref. 12), the heats of foima.tionof the meth~l
and ethyldiboraneswere calculatedby a method ve]tys~milar to the method.
used in the present report. Heats of conibtistion(in,kcal/g)for a number
of boron-containing fuels have been reported with&t@y details of the
method of calculation in a report concerne&.parti&l.=iELywith solid pro- :
pellants for rocket applications (ref. 14).

The heats of formation and combustion=e c~cul.@ed in. this re~ort ~
for a lsrge nuniberof al.kyl-“aridsilyl-subs”t”itute~boron hydrides. The
depression in the heat of combustion resulting fr~rnficre=ing ~kylation~
or silylation is considered. The effect-sdn the heat-sof cotiustion of
substitution of equal numbers of alkyl or sIIY1 ~p~%ou different boron~~
hydrides also sxe discussed. ‘In addition, the lowering of the heat of-
combustion of a given boron hydride resulting fro+ ~lation is compared-
with that resulting from silylation. ‘“ ‘ ,!

-—

.

-.

..—

The nomenclature for boron compounds suggested i~ reference 16 iS
-. .

used in part in the present report. For si?hplicit~,132H6,B5~, ~d ‘~‘:-’‘“ -

B10H14 will be referred to in this report a$ dibodpnefientaboratie,and ‘“ .: 1:

decaborane rather than diborane-6, pentaborane-9, hnd%lecaborane-14, as ~~ ““-
suggested in reference 16, The substituted.compouhds~3B will be called

.-

trialkylboranes (R, alkyl radical). Substituted ~kyldiboranes andsilyl~
diboranes will be nsmed as suggested in reference i6 and illustrated in :: .+ “_
the following list:

CH3 H
\
BH2B:

CH3/ H

ic P-
,-

1,1-Dimethyldibo&ane~
,—
,—

.. ,. :=-
. —

a

CH3 CH3
-. ,, —,.,

1: “>-~—-” --—.;

~2B/ “ 1,2-Dime~hyldib~rm%-
.. — 1: ._L-

\
!, t%

H H I + ,:,. —
--

—

—
1. —. -..3
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1,1,2-TMmethyldibrsme
~3\ /~3

. /~B\

‘3 H

siH3\ siJ13

,~B< 1,1,2-K&isilyldiborane

siH3 H

The name boryl for the BH2- radical suggested in reference 16 is adopted
as are the nsmes methylboryl snd dimethylhoryl for (CH3)BH- =d (CH3)2B-2

respectively. Compounds of the types R2BCH#R2 sad ~BqH4~ will be
named in the following way:

H2BCH2BH2 Diborylmethane

H2BcH#H2BH2 1,2-Diborylethsne

H2B@2BHCH3 Borylmethylborylmethane

CH3BBCH2BHCH3 Bis-methylborylmethsne

H2BCH2CH2BHCH3 l-Boryl-2-methylborylethane

(CH3)2Ba2C~B( CH3)z 1,2-Bis(dimethylboryl)ethane

The radicals formed by removal of a hydrogen atom from the boron
hydrides other than borane will be given the anyl ending. Thus, the
radicals B5Hs and BIOHU wilL be referred to in the present report as

the pentaborsnyl sad decaboranyl radicals. ConsequediLy, alXylated ad
silylated derivatives of pentaborane and decaborsme may be named as sub-
stituted hydrocarbons sad silanes, but more comnon usage calls for naming
these compounds as alkyl and silyl derivatives of the various boron hy-
drides. When two radicals are joined, as in B5H8B5H8, the bi prefex will

be used as in biphenyl C6H5C6H5. Since the thermochemical information is

insufficient to differentiate thermally between nonequivalent boron atoms
in pentaborane and
will not be used.

‘5H8H3

B5H# iH3

decaborane, the numbering of the skeletal boron atoms
To illustrate,

Methylpentaborane, or pentaboralmethane

Silylpentaborsne, or pentaborsnylsil.ane

.
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B5H8C2H5

B5H~B5H~

B5H~cH~B5H~

B5H~cH#H#5H~

B~~H13cH3

%O=13%OH13

B10H13CH2CH2B10H13

Ethylpentabor,me,

Bipentaboranyl
-.

~
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.,
or pe~a%oranylethane .-

-..:.-
\--- ! .-.. . .,.,

; _—
., —

Dipentaborany@etha~ _.
.—

‘lj2-Dipentaboranyle~hsn~ ..

Methyldecaborane, or decaborsnylmethsne ,.

Bidecaboranyl ~ X .- ,-
— ,,

1,2-Didecaboranylet~ane’- ,.
-. ..-i,.-

HEATS OF FORWTION OF BORON HYDRIDES,

SILYZ RADICALS, AND GASEOUS

.—

TRIALQiBotis, AIKYL AND

BORON.@D -ON 1,

The heats of formation of di’boraneB2~, peri~aboraneB5~, snd deca-

borane B10H14 have been determined at the ~~tion+ B@eau of Standar@ ~: ‘“

~ref. 6) from the thermal decomposition of.the hy@ri==s to boron snd hy-
drogen. These values are listed in table I. The heat of formation of
borsne BH3 listed in table II was calculated from the heat of reaction .—-
of 28 kcal.per mole for the reaction B2H6+2BH3 (ref. 13) and the heat of

formation of diborane. The heats of formation O! B2~5j B2H4, B2H3~ B2H2~

B5H8~ ~d B10H13 in table II have been estimated~y assuming that the bond—
dissociation energy for breaking the first.~oron-to-hdrogenbond so as to
form B2H5~ B5H8~ =d B10H13 ~d the average boro+hy~ogen bond energy in

forming B2H4, B2H3j and B2H2 may be approximated~Y ~he average boron=to-

hydrogen bond energy in borane. This assumption !wi.11be discussed in more
detail in the following section on bond energies.1 ~~ ::,.-..

.
The heats of combustion of the trimethyl-, tkiethyl-, tri-n-propyl-,

-.,.

and tri-~-butylboraneshave been determined (refs:.6;’10, and 15).
Complete combustion of boron-containing compounds!(refs. 10 and 15) “
is difficult to obtain. Residues of both boron dad csrhon and possibly
psrtially oxidized products also often remain aft@ ccmibustion.Although
the residues may be partially corrected forby analy=is (unpublishedLewis
data), the uncertainties in the experimental heat% of:combustion at present-
range from *1 to *2 percent. As,a consequence, t~e &ats of formatiti of
the trialkylboratis are uncertain from +5 TO ti5 kcarper mole. — ““

—- ---
.
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The heats of formation of @l free radicals, for example, CH3,
.

CH3CH2J and CH#H2CH2, may be obtained from the heats of formation of the

psrent hydrocarbons and the bond dissociation energies of the radical-to-
hydrogen bonds of these hydrocarbons. The bond dissociation energies for
the radical-hydrogenbonds me obtained from electron impact measurements
in the mass”spectrograph (ref. 17)-,from studies of the kinetics of bro-
mination of hydrocarbons (refs. 18 and 19), and from kinetics of p~olysis

2 (ref. 20). The values for the radical-hydrogenbond dissociation energies
P
* from electron impact measurements agree within the experimental errors

with the results from kinetics of bromination. The heats of formation of
the methyl and ethyl radicals are uncertain to Q kcal per mole, while the
heat of formation of the ~-propyl radicsl is uncertain to & kcal per
mole. The most probdle values for the heats of formation of the alkyl
free radicals are listed in t~le II. The use of dissociation processes
involving sllqylfree radicals, where possible, avoids entirely the un-
certainty as to the heat of sublimation of carbon. Actually, the calcu-
lated heats of formation are independent of the choice of the heat of
sublimation of carbon as long as the appropriate carbon-hydrogen and boron-
csrbon bond energies are used with a given choice of the heat of subUma-
tion of csrbon.

m

P

The heat of formation of the silyl free radical SiH3 in table II is

estimated from the heat of formation of silane SiH4 (ref. 21) and the

aversge silicon-hydrogenbond energy (see following section).

The higher heat of sublimation of carbon is listed in table I. The
heat of sublimation of boron given is that reported in reterence 6.

BOND ENERGIES

me experimental average Y-Z bond energies De=(y-Z) may be ob-

tained from dissociation processes such as

by using the expression

i7e=(Y-Z) =AHs/n

where ~ is the heat of atomization and n is the number of Y-Z

binds broken in the dissociation process. The experimental average bond
energies for the boron-hydrogen end boron-carbon bonds msy be calculated
from the dissociation processes
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BH3(g)+B(g) + 3H(g) ~
,:

and ,— — --..=

BR3(g)+B(g) +-3R(g) i : ;. ;!,.~-—

where R is alkyl radical. Similarly, the experime&l average bond
energies may be obtained for the carbon-hydrogen &@6ilicon-hsilrogen ‘-

..

n
.“ .,

:

.

.

,=
..

,. —
,.
.

—
bonds from the dissociation processes - 1. i =-- - .-

“ -=-. 3-

and

.,..
;=.. ,,
I ! ,—

SiH4(g)+Si(g) +~(g) ! j 1~:.-

Another method of obtaining average bmd ene~gie~ uses Paulingls- ,.
equations (ref. 22) involving the srithmet~c and georn~tricmesns of tlie ~
nonpolar bond energies. The equation involving t~e geometric mean is.. ,
more satisfactory to use and has therefore,been eq’iplo~edto calculate the’”
average bond energy for the boron-silicon bond fo< which no experimental
data ae available. This equation is Z

D=(Y-z) = d
,,

D(Y-Y)D(Z-Z) +“:23.06[;Y-:”~]2
..

Wher; D(Y-Y) and D(Z-Z) are nonpolar bond energies,-that is, D(C-C),
D(C1-C1), and,so forth; Xy and Xz are the electronegativitiesof ‘~
atoms Y and Z (ref. 22). The D(B-B) and XB ~havebeen obtainedby ‘
solving simultaneous ,(Eauling)equations using da~a f& the boron com-
poundp@H3, BBr3, and BR3, where the heats of fo~at~on, D(H-H), D(Br-Br)’~

D(C-C)~ xH> xBr> and Xc, are known. The value o~ D~B-B) also has been,. .-
determined by solving the simultaneous equ@ions ~nvoTved in the decorn~o-
Sition reactions for BH3, B2H6, B5H9, and E10-H14.~The rnuibersof the

various types of bonds (B-H, B-B, BHB, BBB) sre taken-from reference Es”.‘
The average values obtained for D(B-B) and xB be PO kcal per mole,.an~~

2.0 units, respectively. (Pauling (ref. 22J previous_Jyobtained an xB

of 1.95 using more limited data.) These values mdy then be substituted
back into Pauling~s equation to obtain SUCQ bond energies as ~a(Si-B).

All the pertinent average bond energies obtZainedexpe~imentally-or fram
pauling’s equation are listed in table 111.;. : Q. ..

,:

,—-.
J-

. .

—
. .

“
.-

-+

...
—
,.

.-—.

——

—

-.
—..
--

.

.—.-.

Actually bond dissociation energies such as (B5H8)-H are desired, not

average energies. For exemple, by use of the average%ond energj ~(B-H)
,5

, -’ —-.. _ A
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in pentaborane, the assumption is made implicitly that all boron-hydrogen
bonds have equal energies. Furthermore, it is assumed that the apex boron
in B5~ is the same as the base Wren atom (ref. 3). Similarly, the four

different types of boron atom in decaborane (ref. 3) are assumed to have
equal D(B-H) values. Unfortunately, no bond-dissociation-energy data for
specific dissociations ~~i-H sre available for boron hydrides. When

more detailed information on bond energies and bond dissociation energies
of boron hydrides does become available, it may become possible to esti-
mate the differences in boron-h@ogen bond energies smong nonequivalent
boron atoms in the higher boron hydrides.

METHODS OF CAKX%WTION

Heats of Formation

The heats of formation of boron-containing molecules for which there
are no experimental data from heats of co?ibustionyheats of decomposition,
and so forth, can now be computed. The method to be used involves atomiza-
tion or dissociation reactions. For exsmple, methylpentahorane (or penta-
borsnylmethsne) B5H8CH3 maybe (1) atomized into gaseous atoms or (2) dis-

sociatedby breaking a single boron-carbon bond as follows:

B5H8~++=(g) + c(g) + ~H(g) (1)

B=jH@@+B#@) +cH3(d (2)

Where possible, the molecules of interest willbe dissociated (eq. (2))
into boron hydride fragments such as gaseous pentaborsne and alkyl or
silyl radicals. For the alkylated diborylmethanes, diyentshorsnylmethane,
and didecahoranylmethanes,decompositions to gaseous carbon sJ.sosre in-
volved. In such cases csre was taken to use the appropriate values for
aversge csrbon-hydrogen snd boron-carbon bond energies (table III).

The heats of these dissociation reactions are taken as the sums of
the bond energies for the bonds broken in formation of the fragments.
Thus, in the dissociation reaction for B5H8H3(g) given in equation (2)J

one boron-carbon
Just 89 kcal per

In general,

bond is broken; therefore, the heat of dissociation is .
mole.

the heat of formation

‘f = @,(products ) -

@f willbe given

~(dissociation)

by
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or by
4- ,-Q. -. ,;—

,_ ,- ,,
@=~@(products) -~(y-z;) ,

The approximate nature of the bond ene=gies tied=mearm that the heats,
of formation (table II) calculated from them me uhc~dt~n to J?erhaPs“k5
to &15 kcal per mole, although some errors may can:celjeachother out in
the calculation. Fortunately, the contributionso: the heats of formatiori
of the alkylated and silylated boron hydrides ae ~a~Y ~eater than ~
percent of the heats of combustion. Hence,’-theun~er~inties in the heats
of formation result in uncertainties in theheats bf combustion of only 1
to 2 percent. ; ,- ,,

.

Heats of Vaporization : =.

The heats ofj?ormation of the gaseous molecules have been obtainedby
the procedure of the preceding section. Since the~heats of formation of
the liquids are also needed, the heats of vaporiza~io?&ofthe liquids MUS{
be estimated. But, because most of the molecules considered have not %eeri
synthesized, neither heats of vaporization .&vaP ,nor bo~~ng Pofnts we.:

generally availsble.
. I ,..-

The present investigation shows that the extremely simple e~ression

AHvap = 2 +-2n(C, B, Si atom) -
1,

will give ~ap values with az,average deyiation!of~ kcal yer mole and “- —1.1
less from the experimental heats of vaporization at the boiling Point of “: ‘I

—

the boron hydrides, trialkylboranes, alkyldiborane~, @d alkylsilsnes.
This comparison is given in table IV. From.these ~sJ-@lated heats of va-~i__ “~_~
porization, the heats of fo~ation of the liquids ~av~been calculated
from the heats of-formation of the gases. .: ; i

-..,.... -:“--—z
-

The heats of formation (gas phase and”>i~id @hasye)of
and silylated boron hydrides are listed in table Vi.” ::

Heats of Combustion ! ~:

the sJJsylatedj:a,. ..:w,. ,,. -_+,. .-----

The heats of combustion AHc of the gaseous bndziquid ~kylated

and silylated boron hydrides can now be calculated. ‘=
,, _

The heats of formation of the Pro~cts..~f co~us~lon considered ‘e ,,.—. “l-
isted in the following table:

-. ,= -=::

*

.- -.., —
.—

.-
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Oxide

H20(g)

B203(cr@alline )

B203(aorphous )

C02(g)

Si02(smorphous)

Heat of formation
(at 25° C),
@, kcallmole

-57.80

-305.4

-301.0

-94.05

-208.1

The heats of formation of water vapor and of carbon dioxide sre accu-
rately known (ref. 21). The heats of formation of crystalline and amor-
phous boric oxide (ref. 6) probably still are uncertain to M. kcal per
mole. The heat of fOI’matiOnof amorphous SiMCa iS used (refs. 24 and 25)
because X-ray analysis shows that the silica resulting from bomb calori-
metry of silanes is amorphous (ref. 26).

.
0
!=!

Heats of formation and couibustionappear in table V for substances in

& the liquid, solid, or gaseous state. Heats of cotiustion were calculated
for reactions yielding both amorphous and crystalline boric oxide as prod-
ucts. These values have uncertainties of MOO to MOO Btu per pound.

The heats of conibustionof the various series of boron compounds are
plotted in figure 1. Only the heats of cmibustion of the liquid boron
compounds oxidized to B203(smorphous) are plotted in these figures. How-

ever, as can be seen from table V, the heats of cotiustion for the gaseous
compound sre only 100 to 300 Btu per pound higher than those for the same
substance in the liquid state. The vslues plotted represent the lowest
heats of contxzstionof those listed in tsble V. The most favorable heat-
of-combustion values, which me for the boron compounds in the gaseous
state oxidized to B203(crystalline), are 100 to 700 Btu per pound higher.

DISCUSSION OF RESULTS

The heats of couibustionlisted in table V ad plotted in figure 1
provide data from which a ntier of interesting conclusions can be drawn.
The effects of @lation or silylation of a given boron hydride and on
different boron hydrides now maybe examined in detatl.

.
Triallcyl-and Trisilylboranes

= Alkylation and silylation have a cormnon detrimental effect on the
heats of conibustionof the psrent boron hydrides. Alkylation of borane
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to form R@ compounds reduces the heat of combustion.toa range of values,,_..
only 10 to 20 percent higher than those fo~ JP fuels ‘(AH. for JP fuels, .

.U .
from 18,000 to 19,000 Btu/lb). Silylationto fo~

heat of combustion below that of most hydrocarbons
l(a)).

Alkyl- and Silyldi’boranes’

B(SiH3)3 reduces the ““‘: ~-”;

(see table V and fig.
;, .= —-—z—

. ,,-.. ,-
.,

While diborsne has a heat of cofiustion of more >han 31,000 Btu ~er ~

pound, the heat of combustion of monomethyl@l.boraneig 4700 Btu per pofid” G
lower. Further all@ation lowers the heats of co$bus-ti.onto between

..:—

20,000 and 24,000 Btu per pound. The rnonoalkyldifioranessre unstable titk-
respect to rearrangement to di- or trialkyldibora$es.– .—

,:.=——_,_
Silylation of diborane, even monosilylation,~.dr~ticallydepresses

.-..

the heat of combustion. The heat of combustion 0$ monosilyldiborsne is
,,.--- .

as low as that of trimethyldiborane and the heatslof .conibustionof tri- ‘ ..
and tetrasilyldiborane are no better than those of’J!?fuels (table V fid’””“- —
fig. l(b)).

..
. ..-.-: :...:

=.-
AlkY1- and Silyltetraboran~s “; .—

.

The heat of combustion of tetra%orane itselfiis_ml.y 600 Btu per
4

pound less thsm that of ddborane and is about 140f)Btu per yound higher .
than that of pentaborsne. Although the heats of omb~stion fall off ““ “

tmore rapidly with alkylation and silylation of te rabor~e than penta- “-
.

borane, the higher initial heat of combustion of }heprent compound “’ ‘“- ‘-
-.

tetraborane results in a higher heat of conibustiopfo< all the alkylated
–A

and silylated tetraboranes considered when.compared with the correspond-
~

ing slkylated or silylated pentaboranes (see foil wi~ section). Although ‘-
ttetraborane itself is rather unstable, the slkyla,ed or silylated deriva-”

tives might possiblybe appreckblym ore stable (~abl~V and fig. l(c)).ti -.ti=
k

.

AIJcyl-and Silylpentaborsne& ~

A.lkylationof the heavier pentsborsne,molecu~ehas less-drastic con-
sequences on the heat of combustion than alkylati~n @es for diborsne.
The methylpentaborane (or pentaborsnylmethane)hap a-heat of cotiustlon “
only about 2100 Btu per pound lower than does pen$aborane itself’. Even
propylpentaborane (or pentaboranylpropsne)has a heat of combustion of
about 25,000 Btu per pound, which is quite:an apy!reci~blegain over ~-- ‘; “’
fuels. Silylation again causes a much larger dep&esfi30nin the heatti-of
combustion than does alkylation. Silylpentaboran& (or pentaboranylsl~me)
with only one silicon atom has a heat of combusti~n ~out the stie”asia%
of propylpentaboranewith three csrbon atoms (teb}e ~and fig. l(d)). II

—.

.,
!--

— 1 —.
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Alkyl- ad Sil.yldecdoranes

11

When the even heavier molecule decaborane is considered, it can be
seen (table V and fig. l(e)) that alkylation has a very small effect on
the heat of combustion. Methyldecaborane (or decaborsnylmethane)has a
heat of cotiustion only 1000 Btu per pound less than does deca%orane.
Of even more interest is the fact that methyldecaborane, ethyldecaborane,
and propyldecaborsne all have heats of conibustionlarger than the corre-
sponding slkylpentaboranes despite the higher heat of conibustionof penta-
borane compared with decsborane. Also, the silyldecaborane has a heat of
conibustionover 1000 Btu per pound higher than that of sil.ylpentaborane.
Again, as with diborane and pentaborane, the heat of combustion is de-
pressed about as muchby one silyl group as by one propyl group substi-
tuted on decaborsne.

Diborylmethane, Diborylethane, and Their AU@ Derivatives

Diborylmethane H2BCH#H2, 1,2-diborylethane H2BC2H4BH2, and their

alkyl derivatives show no outstanding advantages in their heats of com-
bustion compsred with the previously discussed %oron hydride ”derivatives.
Although dlborylmethane has a high heat of conibustion(26,000 to 27,000
Btu per pound), alkylation rapidly depressed the heat of conibustionto
vslues only 10 to 20 percent higher than those of JP fuels (tableV end
fig. l(f)). The compound 1,2-tiborylethane has a heat of combustion of
only about 25,000 Btu per pound and alJqylation depresses the heat of com-
bustion into the rage from 21,000 to 22,000 Btu per pound (table V and
fig. l(f)).

Bipentaboranyl and Bidecaboranyl

Bipentaboranyl B5H@5H8 andhidecaboranyl BloH@loH13 wouldbe

formedby the combination of two pentaboranyl or decaboranyl radicals.
Their heats of combustion (table V and fig. l(g)) appear to be only
slightlj lower than those of the respective parent hydrides, penta-
borane and decaborane; consequently, these compounds or their alkylated
derivatives shouldbe very good high-energy fuels.

Dipentaborsnyl- snd Didecaboranyhilhnes

The heats of conibustionof dipentaborsnyl.methaneB5H8CH#15H8, 1,2-

dipentaborsnylethaneB5H8C2H4B5H8> didecaboranylmethaneB1oH13CH2B1OH13J.
and 1,2-didecaboranylethaneB10H13C2H4B10H13 also have been calculated.

The heats of cotiustion of these compounds are in the rsnge from 26,000
r
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to 28,000 Btu per pound (table V and fig. l(g)). ~Their heats of combus-’” “
tion appear to be slightly higher than the methyl’an<ethyl derivatives of
penta’boraneand &ecaborane. The didecaboranylalkanes~have heats of Cornbus-
tion as high or higher than the dipentabortinylalkane<with the same n~%qr
of carbon atoms. If the 3iquid dipentaboranyl-a~d didecaboranylalkan.es
could be prepared, they might be very satisfactory high-energy fuels.
Even higher dipentaboranyl- and didecaboranyltiaues~ such as 1,2- “ .
didecaboranylbutane,should have quite high heatslof -combustionin the
range of 25,000 to 26,000 Btu per pound (estimatedby extrapolation) and
may have very satisfactory liquid ranges, low vol@il_Xties, and fairly ““
high densities. I ‘-— .:

Heats of Combustion of Isomers

It shouldbe noted that many of the compoun@ mentioned in this re-
port can have a number of isomers. For example, $he “SJ_kylgroup in an
alkylpentaborane could be attached to either the @pef”or the base boron ~:...:
atom in pentaborane. Again, in Mpentaboranylmet@ane, the two pentaboranyl=
radicals could be joined by the methylene group al>exto apex, apex to base,
or base to base. Quite probably these isomers haye somewhat different
heats of couibustion.The present status of thermochemical.knowledge of ~~.._
boron compound6 does not justify the refinement of estimating the Mffer-
ences In the heats of formation of isomers, and cchsequently, in their
heats of conibustion. 1 -.

— :,

CONCIIJDINGREMmK8:. ,::

The present calculations of the heats of cotiustion of alkylated and
silylated boron hydrides indicate that alkylated derivatives of penta: .:..
borane and higher boron hydrides should be among the best high-energy
fuels. The higher the boron content, the less all&lation will affect the
heat of couibustionof the boron hydride. However; it is also possi%le
that considerable alkylation wouldbe necessary to obtain a liquid fuel
from a compound such as bidecaboranyl. The preptiati~n of compounds such
as B5H8(~2)nB5H8 ~d B10H13(CH2)nB10H13might result..invery satisfac~o~

liquid fuels. However, further synthetic work is ,necesssrybefore the
exact nature of the best or several best boron-containing high-energy
fuels can be specified.

~=..

As more accurate and extensive thermochemical.data become available
for boron hydrides and alkylated boron hydrides, ~al.~lations of the t~e
made here also can become more accurate and extendive. b view of the
experimental difficulties involved in the thermocl@i@ry of ,boroncom-
pounds, the procedure of using a small amount of experimental data as a ..._
ba@e from which to make extensive semitheoretical.!cal@lations will yob-
ably be of vslue for some time to come. 1-

&
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It also wst be remetiered thst most of the compounti for which csl-
. culations sre made in this report have never been prepared. Furthermore,

many of these conrpoundsmsy be very unstdle and undergo decomposition,
rearrangement, or polymerization reactions. The answers to such questions
of stability amit further synthesis work and physicsl measurements.

.

.

.

m

The vslue of a given compound as a fuel is determinedly a nuxber of
other considerationsbesides its heat of conibustion. A compound may have
a desirshle heat of cotiustion but an unsatisfactory liquid range. A 10SS
in heat of combustion through alkylation may result in a fuel which has
a wide liquid range and also better handling characteristics. Further-
more, a higher co?ibustionefficiency, obtained by allsylationor possibly
silylation, may compensate or more than compensate for the loss in heat
of coxibustion.

obviously, all the factors mentioned and perhaps others WSt be bal-
anced against each other in obtaining the most desirable fuel. A boron-
conttining fuel is yrobably undesiz%ble if it has a heat of co?ibustion
no higher or very little higher than those of JP fuels. The exception
might be aboron fuel which is being used for its high flame velocity and
high thrust rather thsm its high heat content. However, most of the boron
fuels with high heat contents slso probably have high flame velocities and
thrust; thus it appears that use of a low-heat-contentboron fuel would
rarely be advantageous.

SUMMARY OF RESULTS

Estimation of the heats of conibustionof several families of sMcyl-
and silyl-substitutedboron hydrides shows that

1. Al@lation and especially silylation (substitutionof SiJ13groups)

of boron hydrides decrease considerably the heats of conibustion.

2. As the moleculsr weight of the psrent boron hydride increases
from borane to decaborane and then to bidecaboranyl, the depression in
the heats of conibustionresulting from the substitution of a given nwn-
ber of csrbon or silicon atoms decreases.

3. The heats of conibustionof
by alkylation to vslues only 10 to
fuels.

4. The heats of combustion of
rapidly reduced by substitution of
diboranes have heats of cotiustion
19,000 Btu/lb).

borane and diborane me rapidly reduced
20 percent higher than those of W

borane and diborane sre even more
silyl groups. The tri- end tetrasilyl-
very near those of JP fuels (about
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5. The heat of combustion of tetraborae is calctited to be much
closer to the heat of’conhstion of tibors.nethan :thatof pentaborme.
The heats of ccmibustionof alJ-of the -l (“e.g=~~~~ C2H5~ C3H7) ad

silyl (SiH3) derivatives of tetraborane considered.were higher than those,.
of the correspoting pentaborane derivatives (see i~efollowing result).

,, --J

6. The heats of combustion of the al@lpenta~orszlesB5H# and the
alkyldecaborsnesB@l@with R = CH3, C2H5, =d ~3H7’~e equal

to or greater than 25,000 Btu per pound. The heafs of combustion of ‘-=
B5H@iH3 and B@13SiH3 are about the same as those of the alkylated deriv-
atives with R = C3H7.

,.-.
I :;..——

7. The heats of combustion of the alkylated d,iborylmethanesand
.-

ethanes are even lower than those of the alkylated.diboranes. ,.—

—
—

.“-

,

.—;
-.-:

8. The heats of combustion of bipentaboranyl‘~d’-bidecabormyl ar’__,, “~”
only sMghtly lower than those of Pentabome and~dec&borane. However,
the heats of combustion of the ddPmWo--~es ad tie ~decabor~vl- -
alkanes are somewhat higher (up t: 500 Btu/lb) thsn those of the alkyl- ‘“” -
pentaboranes and alkyldecaboraneswith the ~~e n~be~.of c~bon atom%.—

9. The heats of vaporization for the large proportion of the com-
pounds considered for which there are no experimefitalvalues were esti-
mated by the simple empirical formula ~ap = 2 {&~B, C, Si atoms).

~ertiental heats of vaporization for boron hy~des~-alJsyldiboranes~
trialkylboranes,and alkylsiwes mbe reproduced ~t~n 1 km Per
mole tith this empirical eqpation. —

Lewis Flight Propulsion =boratory 1

National Advisory Ccmmittee for Aeronautics
Cleveland, Ohio, July 29, 1955 ~ :=
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TABLE I. - EXPERIMUWU HEATS OF FORMATION OF BORON

HYDRIDES, TRULKYIEO lVJYES,AND G$?J30US

CARBON AND BORON ATOMS !

[Temperature,25°.C] I ~

Substance Heat of formation, 4 : REference
kcaL/mole..

Liquid Gas

‘2H6
--- 7.53 ~.

6

B5H9 7.8 15.0 ~ 6

%0%4 8(crystalline) 26 I
1 6

(CH3)3B -34.5 * 3.5 -29:3 + 315 a~b6,..-

(C2H5)3B -46.8 k 4.7 -38.0 k 4:7 a6
-23 i.8 -14*8 ~ (c)

(@3H7 )3B -65 -54 ‘6
-40 ~ 8 -29*8 : (c)

(~-C4H9)3B -83.9 t 4.2 -70.8 * 4!,2 a6

-94 -81 15

c O(graphite) 171.7 : 21
B O(crystalline) 141*5 ~
SI O(crystalline) 100 * 10 , 4:)...—
aprlvate communication from W. H. Johnkon~& E. J.
Prosen, Nat. Ikur.Standards. i -;’

b
Values of ~(l) and AH;(g) calcula$edlrom data

in refs. 10 and 6 are essentially the sake as
Nat. Bur. Standards values. .-

cUnpublished Lewis data. .-.

interpolated from experimental de,taml (d~H5)3B

and (3-C4~)3B. 1- +-
.—

‘Average value from data of ref. 27. ~ –

--

.:: :!;= .: -:-:

.-
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TABLE II. - CALCULATED KEATS OF FORMATION OF ALKYL AND SILYL RADICALS

AND UNSTABLE SPECIES OF BORON HYDRIDES A.NDALKYLNTED BORON HYDRIDES

[Temperature, 25° C]

Substance Heat of forn?ation, ~, Calculated from data in
(gas) kcal/mole refs. -

CH3 32 17,18
C2H5 25 17,19

Q-c#7 22 17,20

siH3 14 21

BH3 18 6,14 (see tables I and ITI)
B2H5 48

B2H4 89

‘2H3 , 130

B2H2 171

134%o 19

B4% 60

B5H8 56

%@13 67 Y

B(CH3}2CH2 19 6,21 (see tables I and ~1)
B(CH3)2 28
B(CH3)2H -15

B(CH3)(CH2)H 33

B(CH3) 85

B(CH3]H2 2

B(CH2)H2 50 ;

B5H&H2 49 6,21 (see tables I and III)

‘l@13cH2 60 6,21 (see tables I and III)
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TABLE III. - ASCERAGEBOND m,FK21@

Bond Average ~ond Sourc’e ~
energy, D, L

kcal/mole .

c -H

si-E

B-H

B-(CH3)

B-(C#5)

B-(Q-C3H7)

B-Si

B-B

(B-H-B)

(B-B-B)

89&2

81+4

83&4

63A5

80&5

107 * 5

96&3

I .:

cB(cH3)i3 .-

CB(C2H5)3

CB(Q-C2$7)3

Pauling equat,iond i
*

Pauling equation an+ d;;sociation re-
actions of boron ~ydlides

s
I

Dissociation reactions ~f boron hydride:-..
i ‘-

Dissociation reactions ~ boron hydride:
and heat of subli@ti& and crystal.
structure of crys~aKLine boron

%alculated from data in ref. 21.

bCalculated from data in refs. 6 and 13.

calculated from average values of Z@(g) ~or,,:BR3 compounds _
(see table I).

%aking D(Si-Si) as 50kcal/mole (see”table I).
—

.
.

,—.

.

,., ..-.

,, . . ..

...- ----
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TABLE Iv. - ESTIMATION OF KEATS OF VALORIZATION BY THE RELATION
.

AH = 2 +Zn(C,B, Si)

.

Compound

B2H6

B4H1O

’549

‘10H14

B(CH3)3

B(C2H5)3

B(3-C3H7)3

B(9-C4H9)3

(CH3)2B2H4,(1,1)

(CH3)3B2H3

(CH3)4B2H2

(C2H5)2B2H4,(~,1)

CH3S~3

(CH3)2S~2
(CH3)3SiH

(CH3)4Si

C2H5SiH3

(C2H5)2S~

(CH24H)S~3

(~-C4H9)SiH3

(~-c4Hg)s~3

Heat of vaporization,

%P, kcal/mole

Expertiental

3.45

6.47

a7.2

12.13

a5.2

a8.8

all.o

au.l

5.5

7.0

7.3

8.1

4.39

5.10

5.82

6.25

5.33

7.18

5.12

7.37

7.05

aExpertiental data on

bwta from ref. 28.

‘Private coxmmnication
Standards.

Calculated

4

6

7

12

6

9

u

15

6

7

8

8

4

5

6

7

5

7

5

7

7

Dfifer-
ence,

kcal/mole

+0.5

-0.5

-0.2

-0.1

+0.8

+0.2

+1.0

+1.9

+0.5

o

+0.7

-0.1

-0.4

-0.1

+0.2

+0.7

-0.3

-0.2

-0.1

-0.4

0

Average
devia-
tion

0.3

1.0

0.3

0.3

Ref.

21

21

6

(b)

(c)

6

6

6

21

21

21

21

26

26

26

26

26

26

26

26

26

~ap at 250 c“

.

fromW. H. Johnson and E. J. Prosen, Nat. Bur.



TABLE v. - HIMTs OF lKXMATION~ COMBUSTION OF BORON COMFOUNDS (B,H,C,SI)

Heat of combustion, AHc, Btu/lbCompound

To ~03(amorphous)
Solid or

liquid
Cas

sOlia or

liquid

G-w

48,500

33,200

21,400

’20,600

%0, 1(X3

C19 ,600

17,800

31,300

26,600

2d,3@3

22,900

.22,QOO

24,9IXI

‘i2,700

21j7Ml

21,100

Solid or

liquid

25,400(s)

33,100( 2)

21,300(2)

C20,500(2)

C20,0CO(2)

C19,500(Z)

17,700(2)

31,400(2)

26,600(2)

24,2til(2)”

22,800(2)

..2J.,900(.2).

24,S00(2)

‘ 22,700f2j’

21,6CXY(Z)

21,COO(Z)

Gas

a141.9

18

ajb-29

~~b-38,-14

E)b-%,-2g

%b-71,.81

-6

a7.5

-9

lb25 :’

-41

.- -5.7 .–—

-8
,t ,{1- ‘-2~lp:i

-38

-53

B

BH3

B(m3).3

B(C2H5)3

B(3-C3H7)3

B(3-C4H9)3

B(SiH3)3

%%

92%Y33

‘2H4~~3)2

92H3(~3)3

!#2&H3)4.

%HE$2H5

B2H4(C2H;)5’

W33(C*)3

~H2(c2H5)4

o(s)

15(Z)

a~b-35(z)

a~b-47,-23(Z)

aYb-65,-40(Z)

a~b-84,-94(Z)

-12(2)

4(z)

-14(Z)

,.
-31( 2)

-4s(2)

-65i .L).. - -— ..—.

-14(Z)

i ;p “ ~~ -31(1)

-48(Z)

-65(Z)

25,000(s)

32,S00(2)

21,2a)(z]

‘20,500(2)

C19,900(Z)

C19,500(Z)

17,700(2)

31,1CX)(Z)

26,400(2)

24,1iM(Z)

22,800(2)

21,80Q~2.).

24,700(2)

ZJ2,6Go/2):

21,500(2)

20,900(2)

48,900

33,500

21,400

C20, 600

%0, 100

C19, 600

17,800

31,600

26,800

!24,500

23,000

22Jocl

25,C00

‘22,8fJ3

21,800

21>100

‘1 II

%xpertientalpalue.

bl?wudifferent experimental values reported (see table L).
-,

‘Average values.

! ,, .,
I

l,. ,. ,, ,, ,, ;,’ II ;“’1 I i“ 7’*, ,,,,, ,,, .,
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TABLE V. - Continued. mwmsoFFoRwmo~ mcowsTIo~ OFBOION comum (B,E,c,sI)

compound

~H5SUf3

12H4(S~3)2

kH3(Sfi3)3

2H2 (S~3 )4

‘4%0

L@9cH3

14H9C2H5

‘4%$3H7

14HgSiH3

‘5%
15H~cH3

5H8C2~

,5H8C3H7

‘5%s=3

lloH14

‘1O%N3

10%3C2H5

‘W$W3H7

10%W3

Heat of foruation (at 25° C),

A@, kc+acde

Solid or

liquid

-6(Z)

-15(z)

-24(Z)

-33(1)

1.3(z

-2(1

-10(1

-14(Z

4(1

a7.8(1)

-7(Z)

-15(z)

-19(z)

-1(1)

a8(s )

-1(1)

-9(Z)

-13(z)

5(Z)

Gas

-1

-9

-17

-25

19

5

-2

-5

11

*15 .0

1

-6

-9

7

a26

u

5

2

l.s

Heat of combustion, AHc, Btu/lb

lb ~05(amorphous)

Solid or

liquid

22,800(2)

20,300( 2)

19,0C0(z)

18,300(Z)

30,500(1)

27,800(Z)

26,200(2)

25,1OO(Z)

25,0C0(2)

29,1C0(Z)

27,WO(Z)

25,700(2)

24,8W(2)

24,600(2)

28,200(s)

27,200(1)

26,400(Z)

25,SOO(Z)

25,8(X3(2)

Gas

23,000

20,400

19,100

1!3,400

30,700

28,000

26,4~

25,300

25,200

29,300

27,200

25,900

25,C00

24>800

28,5(X)

27,400

26,6~

25,900

25,900

Solid or

liquid

23,000(2)

20,400(2)

19,1OO(Z)

18,300(1)

30,800(Z)

28,C00(Z)

26,400(Z)

25,300(Z)

25,200(Z)

29,400(Z)

27,2.CO(Z)

25,9C0(Z)

25,0C0(Z)

24,800(Z)

28,500(s)

27,300(Z)

26,7C0(l)

26,0C0(Z)

26,000(2)

.,

Gas

23,200

20,500

19,200

18,400

31,000

28,200

26,600

25,500

25,400

29,600

27,400

26,100

25,100

25,000

28,8(M

27;7C0

26,800

26,200

26>200

l%
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TABLE v. - Concluded. HEMS OF lWWUIUON AND COM8UST10N OF BOHON COMPWNI13 (B,H,C,Si)

compound

H#wH2BH2

H#CFL#H(CH5 )

HzBCH2B(CH3)2

(CH3 )~H2J@CH3)

(cJ33)mq@cH5)2

(cH3)2~H2B(cH3)2

E$BC2H4BH2

H2~2H4BH(CH3 ) ~,

‘2W2E4B(CH3 )2

(CH3)BJX2H4BH(CH3 )

.($H31m#4BLcH3)3

(CH3 )2W2H4B(CH3)2,
,l;~’,1

B5H8B5H8

B5HBC~B5~

B5H8C2H4B5H8

%%%%
B@@H2B@3-3

‘10%3C2H4B10%3

,.

I I

leat of formtion (at 25° C),

~, kcal/mole

Solid or

li!$lid

M(l)

-7(2)

-27(1)

-27(2)

-47(2)

-66(1)

lo(l)

;8(2)

-23(1)

-26(1)

- --=41 (-lL–––

-56(1)

q ptl”! ~o(ly’pP’ ‘

2(Z)

-6(1)

32(1)

14(2)

12(2)

Gas

17

-1

-20

-20

-39

-5-1

16

-1

-h ‘

-la

_-.32__

-46

:1.ldjI ,+:

32

15

8

54

37

36

—..—

:Jti

Heat of combwtion, ~, Btu/lb

8olid or

l.lquia

26,300(2)

23,900(2)

22,500(2)

22,5QO(2)

21,500(2)

20,800(2)

24,500(2)

2,3,0j2~(2)

22,000(2)

22,(lw(l)

.21,,300.(2).

20,800(2)

28,800(2)

?7,6M(2)

26,700(2)

28,200(2)

27,600(1)

27,100(2)

Gas

26,500

24,100

22,600

22>600

21,700

21,000

2.4,700

23,100

22,2CQ

22)1CQ

_21,.500

21, CQ0
r I

29, (MO

27,7Ci)

26,900

28,300

27,700

27>300

..! ’1,

1, i 11:”’ ,,

~ F$03(cI’ystalline:

Solid or

liquid

26,500(2)

24,100(2)

22,600(2)

22,600(2)

21,600(2)

20,900(2)

24,600(2)

23,1~O(Z)

22,100(1)

22,100(2)

.21,.4Q0.~2j_

20,903(2)

,1 I !Ofil

29,100(2)

27,900(2)

27,000(2)

28)500(2)

27,900(2)

27,400(2)

Gaa

26,800

24,300

22,800

22,800

21,800

21,100

24,800

23,30~

22,300

22,200

.21,600_

21,100
~

i
29,300

28,000

27,200

28,600

28,000

27,600

.“,

VILcl , ,,,,.
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